Rank determination in tensor factor model

نویسندگان

چکیده

Factor model is an appealing and effective analytic tool for high-dimensional time series, with a wide range of applications in economics, finance statistics. This paper develops two criteria the determination number factors tensor factor models where signal part observed series assumes Tucker decomposition core as tensor. The task to determine dimensions One proposed similar information based selection, other extension approaches on ratios consecutive eigenvalues often used analysis panel series. Theoretically results, including sufficient conditions convergence rates, are established. results include vector special cases, additional rates. Simulation studies provide promising finite sample performance criteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...

متن کامل

Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix ran...

متن کامل

Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration

Low-rank signal modeling has been widely leveraged to capture non-local correlation in image processing applications. We propose a new method that employs low-rank tensor factor analysis for tensors generated by grouped image patches. The low-rank tensors are fed into the alternative direction multiplier method (ADMM) to further improve image reconstruction. The motivating application is compre...

متن کامل

Efficient tensor completion: Low-rank tensor train

This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...

متن کامل

Low-rank Tensor Approximation

Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2022

ISSN: ['1935-7524']

DOI: https://doi.org/10.1214/22-ejs1991